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Abstract

In this paper, we discuss a locus problem that was originated from Chinese college
entrance exam practice problems [5] and it has been discussed in [4]. We will see how the
2D locus problem can be explored using the dynamic geometry software (DGS) Geometry
in Mathematical Arts [2] with di¤erent strategies. Next, we extend the 2D locus problem
to more challenging corresponding problems in 3D with the help of a DGS [2]. We also
illustrate how a computer algebra system (CAS) Maple [3] can be used to derive our
locus analytically. We shall see that the use of a DGS in constructing the locus is very
accessible to students when they can visualize what the locus might look like �rst . On the
other hand, when readers need to use a CAS for verifying if results are consistent with
our visualization, the task becomes much more challenging. In particular, the process of
�nding three points on the ellipsoid systematically and constructing a set of three linearly
independent vectors requires the knowledge of a rotation matrix, whose computation is
tedious if a CAS is not available. Once the rotation matrix is known, it is then simple
to visualize the rotation of a vector about an axis, an important concept in computer
graphics. The paper shows that with appropriate aids of technological tools, challenging
and applicable mathematics can be made more fun and accessible.

1 Introduction

In [4], we considered the problem that appeared at a practice problem of a College Entrance
Exam mentioned in [5], which we state as follows: We are given a circle of radius 1 centred
at the origin, and choose a point C = (a; 0) with 0 < a < 1. Let D and E to be two points
on the circle such that the angle ]DCE is a right angle. Let G be chosen so that DCEG is
a rectangle. The question is to ask for the locus of G: We remark that the original problem
stated in [5] is to �nd the point G when the radius r = 6 and a = 4: In section 2, we use
GInMA [2] to explore a variation of this two-dimensional scenario and use the CAS Maple [3]
to verify the locus analytically. In section 3, we further extend the planar problem to a more
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challenging one in space that is accessible for university students who have learned the concepts
of multivariable calculus and linear algebra. Speci�cally, we replace the 2D ellipse case to a
corresponding 3D ellipsoid. We remark that the techniques adopted in �nding the locus surface
in 3D in this paper certainly can be extended to even higher dimensions and we leave this to
readers to do further investigations.

2 The 2D scenario

In this section, we will replace the original unit circle by an ellipse of the form x2

a2
+ y2

b2
= 1,

shown in blue in Figure 1, we further assume the ratio of semi axes b = OB
OA

< 1: The point
C = (c; 0) is �xed on the longer semiaxis OA with c = OC

OA
< 1: Next we pick two points D and

E on the ellipse (OAB). We are given a �xed angle � = ]DCE (see Figure 1), which is not
necessary a right angle from the original scenario. If we let ' = ]DCA: We shall investigate
the locus of

�!
CG =

��!
CD +

��!
CE while all points D corresponding to the angle ' 2 [0; 2�]:

Figure 1. Original ellipse and the
point G:

First, we consider the vector
��!
CD and let

��!CD = k; then D = (c + k cos'; k sin'): Since
D is a point on the ellipse, we see

(c+ k cos')2

a2
+
(k sin')2

b2
= 1: (1)

We solve for k and choose the positive root from Eq. (1). After simpli�cation, we �nd k

k =
�cb2 cos'+ b

p
(b2 + c2 � a2) cos2 '+ (a2 � c2)

a2 � (a2 � b2) cos2 ' : (2)

Similarly, if we consider the vector
��!
CE and let

��!CE = l; thenE = (c+l cos ('+ �) ; l sin ('+ �)):
Since E is a point on the ellipse, we have

(c+ l cos ('+ �))2

a2
+
(l sin ('+ �))2

b2
= 1: (3)
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We solve for l and choose the positive root from Eq. (3). After simpli�cation, we discover

l =
�cb2 cos ('+ �) + b

p
(b2 + c2 � a2) cos2 ('+ �) + (a2 � c2)

a2 � (a2 � b2) cos2 ('+ �) : (4)

Finally, we �nd the locus G by using
�!
CG =

��!
CD +

��!
CE:

Example 1 We are given a �xed ellipse in blue x2

a2
+ y2

b2
= 1, and we assume the ratio of semi

axes b = OB
OA
= 0:6: The point C = (0:5; 0) is �xed on the semiaxis OA. Next we pick two points

D and E on the ellipse (OAB) such that � = ]DCE = �
3
: The locus of

��!
CD+

��!
CE using Maple

[3] and GInMA [2] are shown in Figure 2(a) and Figure 2(b), respectively. We leave readers
to explore the complete analytic solution including animation using Maple [3] in [S1], and the
GInMA �le using [2] in [S2].

Figure 2(a). Maple and the locus for
ellipse.

Figure 2(b). GInMA and the locus
for ellipse.

3 The 3D Locus for an ellipsoid

We consider an ellipsoid OABC of the form x2

a2
+ y2

b2
+ z2

c2
= 1 with OA = a = 1; 0 < OB = b �

1; 0 < OC = c � 1) and the �xed point D = (d; 0; 0) is given, where 0 < d � 1. We are given
E to be a moving point on the ellipsoid. To generalize the planar scenario to three-dimensions,
we need to know how to select a point E on the ellipsoid to begin with and how to pick G and
F systematically with the help of the vector

��!
DE so that the points E; G and F are all on the

ellipsoid and
n��!
DE;

��!
DF;

��!
DG

o
forms a linearly independent set. Our �nal objective is to �nd

the locus of
��!
DE +

��!
DF +

��!
DG:

3.1 Construction of the 3D locus with a CAS

The challenging task to extend the 2D scenario to the corresponding 3D case is to see how the
desired points E;F and G can be chosen on the given ellipsoid. We further remark that we do
not randomly construct a linearly independent set

n��!
DE;

��!
DF;

��!
DG

o
. Instead, we will describe
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how we choose the point E on the ellipsoid from the given �xed point D; and show how we
use appropriate rotating axes to construct subsequent points of G and F; respectively. First,
we describe our coordinate system and appropriate angles. Let

�!
OA;

��!
OB and

�!
OC represent the

x; y and z axes respectively. We choose E to be a point on the ellipsoid OABC and E 0 be the
projection of

��!
OE onto the yz�plane. For notation purpose, we refer to Figure 3 and let the

angle ' = ]EOE 0: The  is the angle between ��!OE 0 and the positive y � axis (in other words,
 = ]E 0OB in Figure 3). Thus we may write the parametric equation of the ellipsoid OABC
as (a sin'; b cos' cos ; c sin' cos ) ; where ' 2 [��

2
; �
2
] and  2 [0; 2�]:

Figure 3. Spherical coordinates OA;OB and
OC with ' = ]EOE 0 and  = ]E 0OB:

We describe how we �nd the locus of
��!
DE +

��!
DF +

��!
DG analytically in the following steps.

Our general strategy is to construct an orthogonal set of
n��!
DE;�!v1 ;�!v2

o
: Next we rotate

��!
DE

by a non-zero angle � about the axis �!v1 to obtain the point F on the ellipsoid. Similarly,
we rotate

��!
DE by a nonzero angle � about the axis �!v2 to reach the point G on the ellipsoid.

When
��!
DE;

��!
DF and

��!
DG are not coplanar, then we see that

n��!
DE;

��!
DF;

��!
DG

o
forms a linearly

independent set for any ' 2 [��
2
; �
2
] and  2 [0; 2�]:

1. We construct the point E on the ellipsoid then such that

��!
OE = (a sin'; b cos' cos ; c sin' cos )

and ��!
DE = (a sin'� d; b cos' cos ; c sin' cos )
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(see Figure 4).

Figure 4. The point E; planes
OAC and OAE using GInMA.

2. We de�ne �!v1 to be the unit normal vector of the plane OAE that is based at the point
D: In other words, we write �!v1 =

��!
OD���!DE
k��!OD���!DEk = (v11; v12; v13):

3. We de�ne �!v2 to be the unit vector starting from the point D; satisfying �!v2 ? �!v1 and
�!v2 ?

��!
DE : In other words, we may write �!v2 =

��!
DE��!v1
k��!DE��!v1k = (v21; v22; v23): Recall that (see

[1] or [6]) a rotation matrix with respect to a rotation axis can be derived as follows: In R2

we know that the rotation matrix of a vector
�
x
y

�
at an angle � is

�
cos � � sin �
sin � cos �

�
: Now

in R3; we �rst start with a unit vector
�!
U2; and use the common strategy of constructing

a three-dimensional orthonormal set f�!U0;
�!
U1;
�!
U2g: Suppose the unit vector

�!
U2 = (a; b; c);

then we write
�!
U0 =

(b;�a; 0)p
a2 + b2

; (5)

and let
�!
U1 =

�!
U2 �

�!
U1 =

(ac; bc;�a2 � b2)p
a2 + b2

: (6)

We see the set f�!U0;
�!
U1;
�!
U2g is a right-handed orthonormal set and would like to �nd a

rotation matrix R corresponding to a rotation by an angle � about the axis
�!
U2 : In other

words, the vector
�!
U2 is invariant under the rotation matrix R and for

�!
V = x0

�!
U0+x1

�!
U1+
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x2
�!
U2 2 R3; where xi =

�!
Ui �

�!
V with i = 0; 1 and 2: The rotation of

�!
V will be

R
�!
V = (x0 cos � � x1 sin �)

�!
U0 + (x0 sin � + x1 cos �)

�!
U1 + x2

�!
U2 (7)

= U

24 cos � � sin � 0
sin � cos � 0
0 0 1

3524 x0x1
x2

35 (8)

= U

24 cos � � sin � 0
sin � cos � 0
0 0 1

35UTV; (9)

where U = [
�!
U0 :

�!
U1 :

�!
U2]: Therefore, the rotation matrix for a rotation by an angle �

about an axis is

R = U

24 cos � � sin � 0
sin � cos � 0
0 0 1

35UT : (10)

When the axis of rotation
�!
U2 is (a; b; c) and

�!
U0 and

�!
U1 are chosen as in Eqs. (5) and (6),

respectively, the rotation matrix can be shown to be

R =

24 a2(1� cos �) + cos � ab (1� cos �)� c sin � ac (1� cos �) + b sin �
ab (1� cos �) + c sin � b2(1� cos �) + cos � bc (1� cos �)� a sin �
ac (1� cos �)� b sin � bc (1� cos �) + a sin � c2(1� cos �) + cos �

35 (11)

4. We are ready to de�ne the point F explicitly. The point F should be picked so that
it lies on the ellipsoid and the plane OAE; in addition,

��!
DF is the vector obtained by

rotating
��!
DE around the axis �!v1 , which is the normal vector of the plane OAE; by a

pre-determined angle � (see Figure 5). In other words, � is the angle between
��!
DE and��!

DF: In view of Eq. (11), we consider the rotation matrix

A =

24 cos�+ (1� cos�) v211 (1� cos�) v11v12 � sin�v13 (1� cos�) v11v13 + sin�v12
(1� cos�) v11v12 + sin�v13 cos�+ (1� cos�) v212 (1� cos�) v12v13 � sin�v11
(1� cos�) v11v13 � sin�v12 (1� cos�) v12v13 + sin�v11 cos�+ (1� cos�) v213

35
(12)

and de�ne the following vector

�!u =
A
���!
DE

�
A���!DE� = (u1; u2; u3) : (13)

If we use the substitutions of

a11 = u
2
1 +

u22
b2
+
u23
c2
; b11 =

du1
a11
; l1 =

s
b211 +

(1� d2)
a11

� b11; (14)

and let �!
OF = l1

�!u +��!OD: (15)
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Then F will be a point lying on the ellipsoid and on the plane of the plane OAE: Fur-
thermore,

��!
DF is the vector obtained by rotating

��!
DE around the rotating axis �!v1 by an

angle �.

Figure 5. The point F; vectors v1
and v2:

5. We construct the point G on the ellipsoid in a similar way as we did for the point F: We
need to choose the point G so that it also lies on the plane with normal vector �!v2 ; or is
spanned by vectors

��!
DE and �!v1 : To do this, we rotate

��!
DE around the rotating axis �!v2

with a pre-determined angle �: In other words, we have � = ]EDF and � = ]EDG (see
Figure 6).

Figure 6. The point G, vectors �!v1
and �!v2 :

6. We describe how we obtain G analytically here. Analogous to our choice of matrix A in
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Eq. (12), we consider the rotation matrix

B =

24 cos � + (1� cos �) v221 (1� cos �) v21v22 � sin �v23 (1� cos �) v21v23 + sin �v22
(1� cos �) v21v22 + sin �v23 cos � + (1� cos�) v222 (1� cos �) v22v23 � sin �v21
(1� cos �) v21v23 � sin �v22 (1� cos �) v22v23 + sin �v21 cos � + (1� cos �) v223

35
(16)

and consider the rotated vector

�!w =
B
���!
DE

�
B ���!DE� = (w1; w2; w3) : (17)

If we let a22 = w21 +
w22
b2
+

w23
c2
; b22 =

dw1
a22

and l2 =
q
b222 +

(1�d2)
a22

� b22; and set

�!
OG = l2

�!w +��!DE: (18)

Then G will be the desired point on the ellipsoid satisfying conditions mentioned in item
5 above.

7. Finally, we de�ne the locus H to be

��!
OH =

��!
OD +

��!
DE +�!u +�!w : (19)

Example 2 We consider the ellipsoid OABC of the form x2

a2
+ y2

b2
+ z2

c2
= 1 with OA = a =

1; OB = b = 0:75; OC = c = 0:5) and the given point D = (d; 0; 0), where d = 0:75. We
let the point E to be a moving point on the ellipsoid. We shall �nd the points G and F on
the ellipsoid so that

n��!
DE;

��!
DG;

��!
DF

o
forms a linearly independent set. Then �nd the locus of

��!
DE +

��!
DG+

��!
DF:

We follow the steps described in Section 3.1 to �nd the points G and F on the ellipsoid so
that

n��!
DE;

��!
DG;

��!
DF

o
forms a linearly independent. To start withe a point E; we let ' = 0:3

radian and  = �
4
: To �nd the point F and the point G; we choose � = �

6
and � = �

4
.

The complete selection of the point E; calculations of the points F and G; and the locus
surface of

��!
DE +

��!
DG +

��!
DF can be found from [S3]. To facilitate the computations in Maple,

we introduce the substitution r = bcp
b2+c2 tan2 

. It is easy to check that if we write E =

[sin'; r cos' tan ; r cos']; then E is indeed on the ellipsoid of (sin'; b cos' cos ; c cos' sin ) ;
where ' 2 [��

2
; �
2
] and  2 [0; 2�]:When E and other corresponding angles are chosen, we see

the calculations of E;�!v1 and �!v2 in Figure 7(a) and the vectors
��!
DE;

��!
DG;

��!
DF together with the
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original ellipsoid is shown in Figure 7(b) below.

Figure 7(a). The point E and vectors v1 and v2:
Figure 7(b). The vectors of

��!
DE;

��!
DG

and
��!
DF:

Furthermore, the vectors u;w; the points F;G and H and the vector of
��!
DH =

��!
DE+

��!
DG+

��!
DF

are shown in Figures 8 (a) and (b) respectively below:

Figure 8(a). the vectors
�!u ;�!v and the points
F;G and H calculated

with Maple.
Figure 8(b). The vector of��!
DH =

��!
DE +

��!
DG+

��!
DF:

We demonstrate how E is moving along a space curve of [sin'; r cos' tan ; r cos'] for
' 2 [��

2
; �
2
] and the angle  = 45�; � = 30� and � = 45� in Maple worksheet [S4]. Finally, the

locus surface of
��!
DE +

��!
DG+

��!
DF is shown below in Figure 9.
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Figure 9. the locus surface of��!
DE +

��!
DG+

��!
DF:

3.2 Construction of the 3D Locus with the DGS

We see from Section 3.1 that constructing the locus H analytically using the CAS Maple [3]
requires being able to construct rotation matrices. We shall see in this section how to construct
the locus using GInMA [2]. We shall see that using a 3D DGS can make a complex 3D concept
much more accessible through appreciated and needed 3D visualization, and leave tedious
algebraic computations behind, which will make students concentrate on the key concepts of
the problem �rst. We brie�y describe a process using GInMA [2] to complete this construction.

1. The programing code is organized into blocks. Each code block belongs to one object.

2. There are two types of variables:

(a) Common variables are for all blocks: These variables use the name of an object or
scale. For example, A:x is x�coordinate of the point A.

(b) Non-common variables: These are declared in a code block. These variables are used
only in this block and are visible only in the speci�c code block.

3. Each code block belongs to an object that may depend on other object property (for
example, point coordinate).

4. All statements are executed in order, as de�ned by the order of �nal construction of the
objects. For example, after we make the object A, we can make the object B which
depends from A. If C does not depend on A, we can make A depend on C. In this case
C will be calculated before A because �nal A is made after C.

5. Finally, each time a draft GInMA worksheet is drawn or object property is shown, vis-
ible results are executed in an order with the following property: For each code block,
calculating properties of objects that are associated with this code block will be executed
before execution of the whole code block.

The Electronic Journal of Mathematics and Technology, Volume 11, Number 3, ISSN 1933-2823

203

Administrator
Line



We shall use GInMA [2] to explore Example 3 below.

Example 3 We consider the ellipsoid OABC of the form x2

a2
+ y2

b2
+ z2

c2
= 1: Without loss of

generality, we assume a = 1 and we write the ellipsoid OABC with OA = a = 1; 0 < OB = b �
1; 0 < OC = c � 1) as follows: fx; y; zg = O + jA�Oj � fsin('); b cos(') cos(); c sin(' cos()g
for ' 2 [��=2; �=2] and  2 [0; 2�]; where we refer the angles ' and  to Figure 3:

1. We write D = O + fd; 0; 0g � jA� Oj:We pick a = 1; b = 0:5; c = 0:5; d = 0:84; � = 83�
180
=

83�; � = 33�
180
= 33�; ' = 0:3 radian and  = �

3
= 60� for demonstration purpose. We refer

readers to [S5] for exploration. We use the substitution of r = bcp
b2+c2 tan2 

; and pick E

to be on the space curve of [sin'; r cos' tan ; r cos']; for ' 2 [��; �] and  = �
3
= 60�.

For computation purpose using GInMA [2], we convert the angles from degree to radian
measurement. Figure 4 shows the point E; the plane OAC and the plane OAE.

2. We choose
�!�!v1 =

��!
OD�:��!DE
k��!OD�:��!DEk as in Section 3.1; which is the normal vector of the plane

OAE: In GInMA [2], we write �!v1 = [pe�D;O �D] ; where pe denotes the point E;
and we normalize the vector v1: Similarly, we need

�!v2 =
��!
DE�:v1
k��!DE�:v1k : In [2], we write�!v2 = [pe�D;�!v1 ] and normalize �!v2 :

3. Following the construction leading to Eq. (13) we know the unit vector corresponding to

a rotation of
��!
DE about the axis �!v1 by an angle � = ]EDF is �!u =

A(
��!
DE)

kA(��!DE)k . In GInMA
[2], we write �!u as (rotate(pe;D; v1;�� � pi=180) �D), and normalize the vector �!u : As
we recall the purpose of �!u is to construct the point F that lies on the ellipsoid and the
plane OAE with ]EDF = �: Figure 5 shows the vector ��!DF in green, the vector �!v1 in
blue and the vector �!v2 in magenta.

4. As we have seen in Eq. (14) that the scalars a11; b11 and l1 are needed for expressing the
vector

�!
OF . In GInMA [2], we write a1 = u:x^2+u:y^2=b^2+u:z^2=c^2, b1 = d �u:x=a1

and l = sqrt(b1^2 + (1� d^2)=a1)� b1: We write the point F as pf = D+ l � u � jA�Oj;
which is the Eq. (15) in [2].

5. Similar to how we construct the vector �!w in Eq. (17), write, in GInMA [2], �!w =

(rotate(pe;D; v2;�� �pi=180)�D) and normalize the vector �!w . This is a rotation of
��!
DE

around rotation axis v2 by a pre-determined angle �:

6. To construct, in GInMA [2], the vector
�!
OG as shown in Eq. (18), write a2 = v:x^2 +

v:y^2=b^2+ v:z^2=c^2; b2 = d � v:x=a2 and l2 = sqrt(b2^2+ (1� d^2)=a2)� b2, and write
the point G as pg = D + l2 � v � jA � Oj:We recall that the point G lies on the ellipsoid
and the plane EDG whose normal vector is v2 and ]EDG = �: Figure 6 shows the point
G; the vector �!v1 in blue and the vector �!v2 in magenta.

7. The locus H is written in GInMA [2] as fx; y; zg = pe + pf + pg � 2 � D. In other
words, H = E + F + G � 2D: Figures 10(a) and 10(b), respectively, show the space
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curve corresponding to this speci�c locus H and the GInMA [2] code that implements
the construction.

Figure 10(a). Locus H on a space curve.
Figure 10(b). The GInMA code for the space

curve H:

8. Figures 11(a) and 11(b), respectively, show the locus surface and the GInMA [2] code
that implements the construction.

Figure 11(a). Locus surface for H:
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Figure 11(b). The GInMA code for the space
curve H:

4 Conclusions

A Google search on the topic of �3D locus�does not produce many hits. Based on this lack
of evidence, the authors conjecture that �nding solutions to the 3D locus problems may not
yet be completely well understood and that these types of problems can be valuable for future
exploration or research projects. Therefore, we think that the locus practice problems that
appeared at a Chinese college entrance practice exams such as the ones from [5] can be an
inspiring resource for students and researchers. In this paper, we have seen how a static 2D
problem can be extended to other 2D scenarios when a DGS is available for students to explore
and a CAS is available for students to verify their conjectures. Authors are fortunate to have
a 3D DGS such as GInMA [2] for making conjectures about the appearance of a 3D locus.
Furthermore, we have seen in Section 3.1 that the complex and tedious computations cannot
be realized without the help Maple [3]. We recall that we described how to construct a linearly
independent set stemming from a �xed D in an ellipsoid systematically but not randomly.
It is known that the rotation of vectors or matrices is used frequently in computer graphics,
we see how the importance of these concepts are implemented in Section 3. The techniques
adopted here can be implemented when investigating various locus problems with other closed
surfaces. With a 3D DGS such as GInMA[2], it allows us to drag and rotate, and appreciate
the validation from visualization. Since 3D visualization is vital for students, teachers and even
researchers for their respective tasks. Further developments in 3D DGS are de�nitely needed
and bene�cial to all mathematics communities.
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6 Supplementary Electronic Materials

[S1] Maple worksheet for Example 1:
https://mathandtech.org/eJMT_Oct_2017/eJMT_Example1.mws

[S2] GInMA �le for Example 1:
https://mathandtech.org/eJMT_Oct_2017/eJMT_Example1.ginma

[S3] Maple worksheet for Example 2:
https://mathandtech.org/eJMT_Oct_2017/eJMT_Example2.mws

[S4] Maple worksheet for animating the point E in Example 2:
https://mathandtech.org/eJMT_Oct_2017/eJMT_Example2_animation.mws

[S5] GInMA �le for Example 3:
https://mathandtech.org/eJMT_Oct_2017/eJMT_Example3.ginma

[S6] A video clip for Examples 1 and 3 using GInMA:
https://mathandtech.org/eJMT_Oct_2017/eJMT_Oct_2017.mp4
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